本课程为大数据分析初级课程,面向所有应用型人员,包括业务部门,以及数据分析部门,系统开发人员也同样需要学习。
本课程核心内容是理清大数据的本质及核心理念,培训大数据人才的数据思维模式,以解决业务问题为导向,提升学员的数据分析综合能力。
课程大纲:
第一部分: 大数据的核心理念
1、 大数据时代:你缺的不是一堆方法,而是大数据思维
2、 大数据的本质
Ø 数据,是对客观事物的描述和记录
Ø 大数据不在于大,而在于全
3、 大数据四大核心价值
Ø 用趋势图来探索产品销量规律
Ø 从谷歌的GFT产品探索用户需求变化
Ø 从大数据炒股看大数据如何探索因素的相关性
Ø 阿里巴巴预测经济危机的到来
Ø 从美国总统竞选看大数据对选民行为进行分析
4、 大数据价值落地的三个关键环节
Ø 业务数据化
Ø 数据信息化
Ø 信息策略化
案例:喜欢赚“差价”的营业员(用数据管理来识别)
第二部分: 数据分析基本过程1、 数据分析简介
Ø 数据分析的三个阶段
Ø 分析方法的三大类别
2、 数据分析六步曲
3、 步骤1:明确目的--理清思路
Ø 确定分析目的:要解决什么样的业务问题
Ø 确定分析思路:分解业务问题,构建分析框架
4、 步骤2:数据收集—准备数据
Ø 明确收集数据范围
Ø 确定收集来源
Ø 确定收集方法
5、 步骤3:数据预处理—准备数据
Ø 数据质量评估
Ø 数据清洗、数据处理和变量处理
Ø 探索性分析
6、 步骤4:数据分析--寻找答案
Ø 选择合适的分析方法
Ø 构建合适的分析模型
Ø 选择合适的分析工具
7、 步骤5:数据展示--观点表达
Ø 选择恰当的图表
Ø 选择合适的可视化工具
8、 步骤6:报表撰写--观点表达
Ø 选择报告种类
Ø 完整的报告结构
9、 演练:手机大数据精准营销案例赏析
Ø 如何搭建精准营销分析框架?
Ø 精准营销分析的过程和步骤?
Ø 精准营销分析结果呈现
第三部分: 统计分析方法实战篇
问题:数据分析有什么方法可依?不同的方法适用解决什么样的问题?
1、 数据分析方法的层次
Ø 描述性分析法(对比/分组/结构/趋势/交叉…)
Ø 相关性分析法(相关/方差/卡方…)
Ø 预测性分析法(回归/时序/决策树/神经网络…)
Ø 专题性分析法(聚类/关联/RFM模型/…)
2、 统计分析基础
Ø 统计分析两大要素
Ø 统计分析三个步骤
3、 统计分析常用指标
Ø 汇总方式:计数、求和、百分比(增跌幅)
Ø 集中程度:均值、中位数、众数
Ø 离散程度:极差、方差/标准差、IQR
Ø 分布形态:偏度、峰度
4、 基本分析方法及其适用场景
Ø 对比分析(查看数据差距)
演练:寻找用户的地域分布规律
演练:寻找公司主打产品
演练:用数据来探索增量不增收困境的解决方案
案例:银行ATM柜员机现金管理分析(银行)
Ø 分布分析(查看数据分布)
案例:排班后面隐藏的猫腻
案例:通信运营商的流量套餐划分合理性的评估
演练:银行用户消费层次分析(银行)
演练:呼叫中心接听电话效率分析(呼叫中心)
演练:客服中心科学排班人数需求分析(客服中心)
演练:客户年龄分布/消费分布分析
Ø 结构分析(评估事物构成)
案例:用户市场占比结构分析
案例:物流费用占比结构分析(物流)
案例:中移动用户群动态结构分析
演练:用户结构/收入结构/产品结构的分析
Ø 趋势分析(发现事物随时间的变化规律)
案例:破解零售店销售规律
案例:手机销量的淡旺季分析
演练:发现产品销售的时间规律
Ø 交叉分析(多维数据分析)
演练:用户性别+地域分布分析
演练:不同区域的产品偏好分析
演练:不同教育水平的业务套餐偏好分析
5、 最合适的分析方法才是硬道理。
第四部分: 数据分析思路篇
问题:数据分析思路是怎样的?如何才能全面/系统地分析而不遗漏?
1、 常用分析思路模型
2、 企业外部环境分析(PEST分析法)
案例:电信行业外部环境分析
3、 用户消费行为分析(5W2H分析法)
案例讨论:搭建用户消费习惯的分析框架(5W2H)
4、 公司整体经营情况分析(4P营销理论)
5、 业务问题专题分析(逻辑树分析法)
案例:用户增长缓慢分析
6、 用户使用行为研究(用户使用行为分析法)
案例:终端销售流程分析
第五部分: 数据分析策略
问题:数据多,看不明白,不知道从何处看出业务问题?
1、 数据分析策略
Ø 先宏观,后微观
Ø 先整体,再部分
Ø 先普遍,再个别
Ø 先单维,再多维
Ø 先表象,再根因
Ø 先过去,再未来
2、 数据解读要诀
Ø 看差距,找短板
Ø 看极值,评优劣
Ø 看分布,分层次
Ø 看结构,思重点
Ø 看趋势,思重点
Ø 看峰谷,找规律
Ø 看异常,找原因
3、 解读要符合业务逻辑
案例:营业厅客流趋势分析
第六部分: 数据呈现(根据需要讲解,课件留给学员参考)
1、 常用图形类型及选择原则
2、 基本图形画图技巧
3、 图形美化原则
4、 表格美化技巧
案例:绘图示例
第七部分: 分析报告撰写(根据需要讲解,课件留给学员参考)
问题:如何让你的分析报告显得更专业?
1、 分析报告的种类与作用
2、 报告的结构
3、 报告命名的要求
4、 报告的目录结构
5、 前言
6、 正文
7、 结论与建议
第八部分: Power Query预处理工具实战篇
1、 Power BI组件框架
Ø Power Query超级查询器
Ø Power Pivot超级透视表
Ø Power View交互式图表工具
2、 获取和转换(Power Query)
Ø 数据处理的常见问题
Ø PQ功能简介
3、 多数据源读取
Ø 多数据源读取
演练:从文件/Excel/数据库/Web页获取数据源
4、 数据组合/集成
Ø 数据的追加
Ø 变量的合并
Ø 文件夹合并
演练:数据集成(追加、合并、文件夹)
5、 数据转换
Ø 数据表的管理
Ø 数据类型和格式
Ø 数据列的操作
Ø 数据行的操作
演练:数据预处理操作
6、 PQ的本质—M语言
Ø 强大的M语言
第九部分: Power View交互式图表工具实战篇
问题:如何让你的分析结果更直观易懂?如何让数据“慧”说话?
1、 图表类型与作用
2、 常用图形及适用场景
3、 Power view简介
4、 常用图表制作
Ø 柱状图、条形图
Ø 折线图、饼图
5、 复杂图形制作
Ø 双坐标图(不同量纲呈现)
Ø 对称条形图(对比)
Ø 散点图/气泡图(矩阵分析法)
Ø 瀑布图(成本、收益构成分析)
Ø 漏斗图(用户转化率分析)
演练:图表制作与演示
6、 交互式图表
7、 分层钻取
8、 四种筛选器
第十部分: Power Pivot数据建模工具实战篇
1、 Power Pivot简介
2、 PP基本功能
Ø 数据分类
Ø 汇总方式
3、 超级透视表
Ø 建模的核心:筛选器与计算器
Ø 建立多表关系模型
Ø 关系管理:新建、修改、删除
演练:数据预处理操作
4、 度量值
Ø 度量值定义
Ø 度量值计算
Ø 度量值的双层筛选
演练:度量值使用
5、 计算列
Ø 新建列
Ø 列与度量值的区别
6、 DAX数据分析表达式
Ø DAX公式
Ø DAX运算符
Ø DAX函数
Ø DAX高级筛选函数
7、 上下文
Ø 行上下文
Ø 筛选上下文
Ø 度量值的计算原理
Ø 上下文冲突时的上下文处理
结束:课程总结与问题答疑。